Search results for "infrared absorption"

showing 9 items of 9 documents

High-resolution spectroscopy and analysis of the nu3/2nu4 dyad of CF4

2011

International audience; CF4 is a strong greenhouse gas of both anthropogenic and natural origin [D.R. Worton et al., Environ. Sci. Technol. 41, 2184 (2007)]. However, high-resolution infrared spectroscopy of this molecule has received only a limited interest up to now. Until very recently, the public databases only contained cross-sections for this species, but no detailed line list. We reinvestigate here the strongly absorbing ν3 region around 7.8 μm. New Fourier transform infrared (FTIR) spectra up to a maximal resolution of 0.0025 cm−1 have been recorded: (i) room-temperature spectra in a static cell and (ii) a supersonic expansion jet spectrum at a 23 K estimated temperature. Following …

010504 meteorology & atmospheric sciencesInfraredBiophysicsAnalytical chemistryInfrared spectroscopycarbon tetrafluoride01 natural sciencesSpectral linesymbols.namesake0103 physical sciencesPhysical and Theoretical ChemistryFourier transform infrared spectroscopySpectroscopyMolecular Biologyemi-classical analysis0105 earth and related environmental sciences010304 chemical physicsChemistryResolution (electron density)Condensed Matter Physics[ PHYS.PHYS.PHYS-CHEM-PH ] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Fourier transform13. Climate actiongreenhouse gassymbolsinfrared absorption[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]tensorial formalismMicrowave
researchProduct

The high overtone and combination levels of SF6 revisited at Doppler-limited resolution: A global effective rovibrational model for highly excited vi…

2017

Abstract Sulfur hexafluoride is an important prototypal molecule for modeling highly excited vibrational energy flow and multi quanta absorption processes in hexafluoride molecules of technological importance. It is also a strong greenhouse gas of anthropogenic origin. This heavy species, however, features many hot bands at room temperature (at which only 30% of the molecules lie in the ground vibrational state), especially those originating from the lowest, v 6 =1 vibrational state. Using a cryogenic long path cell with variable optical path length and temperatures regulated between 120 and 163 K, coupled to Synchrotron Radiation and a high resolution interferometer, Doppler-limited spectr…

010504 meteorology & atmospheric sciencesOvertoneInfrared spectroscopylow temperature01 natural sciences7. Clean energyHot bandSpectral linechemistry.chemical_compoundHexafluorideFar infraredhot bandRotation-vibration spectroscopy of SF 60103 physical sciencesSpectroscopy0105 earth and related environmental sciencesPhysics[PHYS]Physics [physics]Radiation[ PHYS ] Physics [physics]010304 chemical physicsRotational–vibrational spectroscopyAtomic and Molecular Physics and Opticschemistry13. Climate actiongreenhouse gasExcited stateinfrared absorptionAtomic physicstensorial formalismLong path cell
researchProduct

High-resolution spectroscopy and analysis of the V2 + V3 combination band of SF6 in a supersonic jet expansion

2013

International audience; Sulphur hexafluoride is a very strong greenhouse gas whose concentration is increasing in the atmosphere. It is detected through infrared absorption spectroscopy in the strong ν3 fundamental region. Due to the existence of low-lying vibrational states of this molecule, however, many hot bands arise at room temperature and those are still not known. We present here a contribution to the elucidation of this hot band structure, by analysing the ν2 + ν3 combination band. We use a supersonic jet expansion high-resolution spectrum at a rotational temperature of ca. 25 K that was recorded thanks to the Jet-AILES setup at the Source Optimisée de Lumière d'Energie Intermédiai…

010504 meteorology & atmospheric sciencessupersonic jet expansionBiophysicsInfrared spectroscopy7. Clean energy01 natural sciencesHot bandlaw.inventionsymbols.namesake[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]law0103 physical sciencesSupersonic speedPhysical and Theoretical ChemistrySpectroscopy[ PHYS.PHYS.PHYS-ATM-PH ] Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus]Molecular BiologyComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciences[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]010304 chemical physicssulphur hexafluorideChemistry[PHYS.PHYS.PHYS-ATM-PH]Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus]Rotational temperatureRotational–vibrational spectroscopyCondensed Matter PhysicsSynchrotron[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry[ PHYS.PHYS.PHYS-CHEM-PH ] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]13. Climate actiongreenhouse gassymbolsinfrared absorption[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physicsHamiltonian (quantum mechanics)tensorial formalism
researchProduct

A two-component model for the 2260cm−1 infrared absorption band in electron irradiated amorphous SiO2

2011

Abstract We report an experimental study by infrared absorption (IR) measurements focused on the effects of electron irradiation in the dose range from 1.2 × 10 3  kGy to 5 × 10 6  kGy on the intrinsic band peaked at 2260 cm − 1 in amorphous silicon dioxide (a-SiO 2 ) materials. This IR band is particularly relevant as it is assigned to an overtone of the strong asymmetric stretching vibration of Si–O–Si bridges and consequently it is intimately related to the Si–O–Si bond angle distribution. In a recent work we have shown that structural modifications induced by irradiation take place through the nucleation of confined high-defective and densified regions statistically dispersed into the w…

Infrared absorptionAbsorption spectroscopyChemistrybusiness.industrySettore FIS/01 - Fisica SperimentaleAnalytical chemistryNucleationElectron irradiationInfrared spectroscopySilicaCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsAmorphous solidMolecular geometryOpticsMolecular vibrationDensificationMaterials ChemistryCeramics and CompositesElectron beam processingAmorphous silicon dioxideIrradiationbusinessJournal of Non-Crystalline Solids
researchProduct

High-Resolution Spectroscopy and Preliminary Global Analysis of C–H Stretching Vibrations of C2H4 in the 3000 and 6000 cm-1 Regions

2010

International audience; Ethylene (ethene, H2C=CH2) is a naturally occurring compound in ambient air that affects atmospheric chemistry and global climate. The C2H4 spectrum is available in databases only for the 1000 and 3000 cm−1 ranges. In this work, the ethylene absorption spectrum was measured in the 6030- 6250 cm−1 range with the use of a high resolution Bruker IFS 125HR Fourierspectrometer and a two-channel opto-acoustic spectrometer with a diode laser. As a secondary standard of wavelengths, the methane absorption spectrum was used in both cases. A preliminary analysis was realized thanks to the tensorial formalism developed by the Dijon group that is implemented in the XTDS software…

Infrared absorption[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistryEthyleneDiode laser spectroscopy[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistryFourier transform spectroscopyEarth and planetary atmospheres
researchProduct

Conformational substates of the Fe2+-His F8 linkage in deoxymyoglobin and hemoglobin probed in parallel by the Raman band of the Fe-His stretching vi…

1996

Linkage (software)VibrationChemistryRaman bandAnalytical chemistryHemoglobinPhysical and Theoretical ChemistryBand IIICondensed Matter PhysicsAtomic and Molecular Physics and OpticsNear infrared absorptionInternational Journal of Quantum Chemistry
researchProduct

Sintering process of amorphous SiO2 nanoparticles investigated by AFM, IR and Raman techniques

2011

We report an experimental investigation on the effects of thermal treatments at different temperatures (room-1270 K) and for different duration (0-75 h) on amorphous silica nanoparticles (fumed silica) in powder tablet form. Three types of fumed silica are considered, comprising nearly spherical particles of 40 nm, 14 nm and 7 nm mean diameter. The experimental techniques used here are Raman and infrared absorption (IR) spectroscopy together with atomic force microscopy (AFM). Raman and IR spectra indicate that the structure of nanometer silica particles is significantly different with respect to that of a bulk silica glass. In particular, the main differences regard the positions of the IR…

Materials Chemistry2506 Metals and AlloysInfrared absorptionMaterials scienceAbsorption spectroscopyAFM-IRAnalytical chemistryNanoparticleSinteringInfrared spectroscopyCeramics and CompositeCondensed Matter Physicsymbols.namesakeAtomic force microscopySinteringFumed silica; Sintering; Atomic force microscopy; Raman; Infrared absorptionMaterials ChemistryFumed silicaRamanFumed silicaElectronic Optical and Magnetic MaterialCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsAmorphous solidCeramics and CompositessymbolsRaman spectroscopy
researchProduct

Far infrared absorption by acoustic phonons in titanium dioxide nanopowders

2006

We report spectral features of far infrared electromagnetic radiation absorption in anatase TiO2 nanopowders which we attribute to absorption by acoustic phonon modes of nanoparticles. The frequency of peak excess absorption above the background level corresponds to the predicted frequency of the dipolar acoustic phonon from continuum elastic theory. The intensity of the absorption cannot be accounted for in a continuum elastic dielectric description of the nanoparticle material. Quantum mechanical scale dependent effects must be considered. The absorption cross section is estimated from a simple mechanical phenomenological model. The results are in plausible agreement with the absorption b…

Materials sciencePhononContinuum (design consultancy)FOS: Physical sciences02 engineering and technologyDielectric01 natural sciences7. Clean energyMolecular physicsElectromagnetic radiationCondensed Matter::Materials ScienceFar infrared0103 physical sciencesPhenomenological modelElectrical and Electronic Engineeringacoustic phonon010306 general physicsAbsorption (electromagnetic radiation)Condensed Matter - Materials Sciencetitanium dioxidenanoparticleAbsorption cross sectionMaterials Science (cond-mat.mtrl-sci)[ PHYS.COND.CM-GEN ] Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]021001 nanoscience & nanotechnology3. Good healthElectronic Optical and Magnetic Materialsinfrared absorption0210 nano-technology
researchProduct

Infrared Absorption Spectroscopy

2021

Infrared (IR) absorption spectroscopy is one of the most important analytical techniques available to study different kinds of samples including solids, semisolids, biological materials, films, liquids, solutions, and gases. IR spectroscopy not only uses the so-called infrared absorption, but also other techniques such as the attenuated total reflection method, diffuse reflectance method, reflection-absorption method, photoacoustic spectroscopy, and emission spectroscopy. IR spectroscopy is a technique based on the vibrations of the atoms of a molecule. An infrared spectrum is obtained by passing infrared radiation through a sample and determining what fraction of the incident radiation is …

Michelson interferometerMaterials scienceSettore CHIM/03 - Chimica Generale E InorganicaAnalytical chemistryFourier transform infrared spectrometryTransmission spectroscopyInfrared spectroscopyInfrared absorption spectroscopySpectroscopyEmission spectroscopyInfrared radiation
researchProduct